Section	270
Page	270.1
Issue	С

Performance

	Nominal Capacity GPM M ³ /hr		Pressure				
Size			l Standard l		High Pressure 4-Bushing Design		
			PSI	BAR	PSI	BAR	
RL016	105	23.8	250*	17	400*	27	
RL025	160	36.3	175	12	400*	27	
RL150	820	186	N/A	N/A	400	27	

^{*} Packed Pumps are limited to 200 PSI (14 bar)

Temperati	ure Range	Viscosity	Range**
°F	°C	SSU	cSt
-40 to 400*	-40 to 205*	31 to 2,000,000	1 to 440,000
		∠,000,000	440,000

^{*} Special sealing or materials may be required.

RL40167 with front cover removed


Nomenclature

Product Description

The RL Series timed rotary lobe pumps with bi-wing lobes have been designed exclusively for industrial applications. They combine these four key benefits:

- Maintain product integrity, especially for shear-sensitive fluids, suspensions or dispersions.
- Provide a variety of sealing options, allowing end users to purchase seals from their vendor of choice.
- Provide higher pressure capabilities than traditional rotary lobe pumps.
- Provide ease of maintenance, including cleaning and lobe clearance adjustment. Simple timing design requires no shimming.

The RL Series efficiently handles a broad range of fluids, from water-like to highly viscous, while minimizing fluid shear and pulsation. The unique, patented design emphasizes flexibility in sealing, porting and lobe clearance adjustment to optimize the pump for each application. Lobe timing has been simplified for ease of operation and maintenance. An extremely robust design has been employed to prevent shaft deflection and ensure an exceptionally long service life, even on difficult applications.

Material

7 = Stainless Steel

The RL Series come standard with 2 bushings behind the lobes. The high pressure design has bushing support on both sides of the lobes. This is standard on size 150, and optional on the smaller sizes. The model number does not differentiate between the standard or high pressure designs. To get a high pressure pump on the smaller sizes, use the standard model number (e.g. RL40257) and order the high pressure option.

^{**} Optional low viscosity construction (reduced clearances) may be required below 750 SSU

Section	270
Page	270.2
Issue	С

Major Design Features

Shaft sealing options include cartridge-style single and double mechanical seals and cartridge-style triple lip seals on all sizes. Packing and component-style single mechanical seals are also available on the RL016 and 025 pumps. These pumps were designed to offer maximum flexibility, using standard size, off-the-shelf seals from major manufacturers. Features include:

- Double tapered roller bearings in a patented threaded, adjustable housing, which allows lobe clearance adjustments without shimming and without complete pump disassembly.
- Porting flexibility, to match the correct port size to the customer's piping, is provided through an enlarged suction area with bolt-on ports on the RL016 and 025, (3" & 4") and three port size options (6", 8" & 10") on the RL150.
- Bi-wing lobes offer maximum surface sealing area for high efficiency. The large voids gently handle fluids that are shear-sensitive or have entrained solids.
- Enlarged loading cavities on three sides of the lobes minimize fluid pulsation and improve suction characteristics on highly viscous fluids.
- Optional low viscosity construction with reduced clearances is available on the RL016 and RL025 for thin liquid applications. This minimizes slip to provide highest volumetric efficiency and maximum discharge pressure, even on water-like fluids.
- Reversible direction of flow. The pump can be run in either direction. Some modifications may be required. Consult the factory for details.
- The extra-large helical timing gears reduce noise, provide high load-carrying capabilities, and offer long life. Timing gear adjustment is simply done by matching two marks on each gear, and locking tang washers in place.
- Temporary run-dry capability. Because the timed lobes are non-contacting, the pump may be run dry for short periods, if a seal flush/quench and lubricating fluid film on the bushings is present.

RL40167 Industrial Lobe Pump

RL40167 (shaft guards removed)

Section	270
Page	270.3
Issue	С

Feature Overview

Extended Seal Life

- Enlarged suckback tube vents air from both seal chambers to prevent dry seal faces. Shaft support on both sides of seal prevents deflection and seal wear.

Ease of Reassembly

- Dowel pins ensure true alignment upon reassembly, to prevent lobe contact and extend seal life.

Sealing Flexibility

- Accepts cartridge mechanical seals from most manufacturers (or packing or component mechanical seals on the RL016 and 025).

Simple Lobe Clearance Adiustment

- Just rotate the adjustable bearing housing and lock with a set screw. No shimming!

> Bearing Isolation - Labyrinth seals protect thrust bearings

from contamination.

Enlarged Loading **Cavities**

- Three-

side access improves suction side filling and reduces discharge side trapping pressure pulsations.

Porting Flexibility

- Bolt-on port options

on smaller sizes, plus 3

port size options on the

match the application.

RL150. ensure correctly

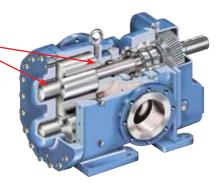
sized ports are available to

Steam* or Solvent

Cleanable

- Designed for applications where frequent cleaning is required.

Easy Timing


- Match the timing gear marks and secure the locknut with the tang washer. No shimming!

Thrust Control

- Regreasable, double-row tapered roller bearings handle radial and axial thrust (RL016, RL025).

High Pressure

- Optional high pressure design (standard on RL150) uses pumpagelubricated bushings on both sides of the lobes to prevent shaft deflection and allow pressures to 400 psi (27 bar).

Lobe Retention

- Lobes on standard RL016 and RL025 pumps are secured by means of snap rings, allowing replacement of lobes. Lobes on high pressure models, including RL150s, are press fit onto shafts.

*Steam temperature is limited to 275 °F (135 C)

Section	270
Page	270.4
Issue	С

Specifications

Model	Numbers	Por	t Size*	Non	Nominal		Nominal		Nominal		Nominal		Max.	Disch	arge Pr	essure						ping																																												
Packed	Mechanical Seal	Std.	Optional	Capa (at max		Max. Speed	Stand 2-Bus Desi	hing	4-Bu	ressure shing sign	Ma Hydro Press	static		ax. erature	(H Pres	ight igh ssure sign)																																																		
		(in.)	(in.)	GPM	M³/hr	RPM	PSI	Bar	PSI	Bar	PSI	Bar	°F	°C	Lbs	Kg																																																		
DI 0407	RL40167		3"③	405	00.0	640	050	47	400	0.7	000	40	400	004	281	128																																																		
RL0167		RL40167	3"⊕	4"①③	4"①③	105 23.8	105 23.8	105 23	105	105	105 23.8	23.8	105 23.8 6	040	250	17	400	27	600	40	400	204	(305)	(139)																																										
DI 0057	DI 0057 DI 40057	2"(3"③	160	26.2	640	175	12	400	27	600	40	400	204	297	135																																																		
RL0257	RL40257	3"①	4"①③	100 30.3	100 30.3	100 30.3	36.3	100 30.3	100 30.3	100	160	1 160	160	160	160	160	1 160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160		36.3	160 36.3	36.3 640	160 36.3	36.3 640	640	640	640	640	640	640	1/5	12	400	21	600	40	400	204	(321)	(146)
N/A	RL41507	6"②	8"②④	820	186	600	N/A	N/A	400	27	600	40	400	204	1160	530																																																		
IN/A	NL41307	0 ②	10"②④	020	100	000	IN/A	IN/A	400	21	000	40	400	204	1100	330																																																		

^{*} Raised face flanges are standard. Pumps may be ordered with one port (usually suction) larger than the other port, using any of the optional port sizes

- ① Ports are suitable for use with 150# ANSI steel or stainless steel companion flanges or flanged fittings
- ② Ports are lap joint flanges suitable for use with 150# ANSI steel or stainless steel companion flanges or flanged fittings
- 3 Ports are suitable for use with 300# ANSI steel or stainless steel companion flanges or flanged fittings
- Ports are lap joint flanges suitable for use with 300# ANSI steel or stainless steel companion flanges or flanged fittings

Construction

0	Stan	dard	Optio	ns		
Component	RL016-025	RL150	RL016-025	RL150		
Casing & Head	316 Stain	less Steel				
Lobes	ASTM 743 (ess Steel Grade CF8M d Hardened				
Shafts	ASTM A56	ss Steel 4 Type 630 Hardened				
Bushings	, ,	y Ether Ether one)	Contact F	actory		
O-Rings	Vito	on®	Kalre	Z [®]		
Bracket	Cast	Iron				
Gear Case Cover	Alum	inum				
Shaft Guards	Stainless Steel	Painted Steel				
PEEK® is a trademark of Victrey PLC						

PEEK® is a trademark of Victrex PLC.

Viton® and Kalrez® are registered trademarks of DuPont Dow Elastomers.

Shaft Sealing

		Seal Options									
Size	Cartridge Single Mechanical Seal	Cartridge Double Mechanical Seal	Cartridge Triple Lip Seal	Component Single Mechanical Seal	Packed Gland						
RL016	S	0	0	0	0						
RL025	S	0	0	0	0						
RL150	0	0	S	N/A	N/A						
S = 5	S = Standard; O = Optional; N/A = Not Available										

RL41507 with optional 10" ports

RL40257 with High Pressure Option

Section	270
Page	270.5
Issue	С

Special Materials and Options Selection Guidelines

High Viscosities - Above 3,300 cSt

- Sealing Considerations for viscosity (based on application requirements and experience)
 - PPC 1101V Cartridge single seal good up to 3,300 cSt.
 - Cartridge triple lip seals good up to 400,000 cSt.
 - Contact factory for seal recommendations for viscosities over (3,300 cSt) when cartridge lipseal is not acceptable.
- Larger ports may be required depending on suction conditions.
- Pump may need to be operated at slower than normal speeds, which may require a larger pump. OLETED
- Additional clearances required per ES2 (Engineering Standard 2).

For Low Viscosities Or Non-Lubricating Liquids - Below 180 cSt

Reduced clearance lobes

For High Temperatures - Above 212°F to 400°F (100°C to 204°C)

- High temperature elastomers Viton® up to 350°F (177°C); or Kalrez® is rated to 500°F (260°C).
- Standard PEEK® bushings rated to 250°F (120°C). Consult factory above 250°F (120°C).
- Contact factory for clearance specifications.

For Abrasive Or Dirty Liquids

- Wear resistant bushings Contact factory.
- Hardened or hard-coated shafting.
- Abrasive-resistant seal.
- Pump should be operated at slower than normal speeds, which may require a larger pump.

Viton® and Kalrez® are registered trademarks of DuPont Dow Elastomers, LLC. PEEK® is a trademark of Victrex PLC.

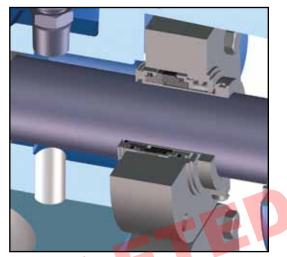
Section	270			
Page	270.6			
Issue	С			

Mechanical Seal Options

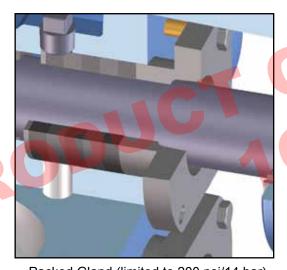
RL40167 & RL40257 (1.875" Shaft)

-	eal tyle	Seal Vendor	Seal Type	Materials Of Construction			
	artridge Single * PPC		1101V	Viton elastomers, Carbon vs Silicon Carbide seal faces, 316 S.S. metal parts and single coiled spring			
	bber lows	Mech. Seals	1101V	Viton elastomers, Silicon Carbide vs Silicon Carbide seal faces, 316 S.S. metal parts and single coiled spring			
Trip	tridge le Lip eal	Fluidtec	P/S-II	Viton elastomers, Gylon sealing elements, PTFE spacers, 316 S.S. metal parts			
		Flow- serve	ISC1PX	Viton elastomers, Carbon vs Silicon Carbide seal faces, 316 S.S. metal			
Cart	tridge	John Crane	5610	parts and Hastelloy C springs			
Sir	ngle sher	Flow- serve	ISC1PX	Viton elastomers, Silicon Carbide vs Silicon Carbide seal faces, 316 S.S.			
		John Crane	5610	metal parts and Hastelloy C springs			
		Flow- serve	ISC1BX	Viton elastomers, Carbon vs Silicon Carbide seal faces, 316 S.S. metal			
	tridge	John Crane	5615Q	parts and Alloy 20 or Hastelloy C bellows			
M	ngle etal	Flow- serve	ISC1BX	Viton elastomers, Silicon Carbide vs Silicon Carbide seal faces, 316			
Bei	lows	John Crane	5615Q	S.S. metal parts and Alloy 20 or Hastelloy C bellows			
		Flow- serve	ISC2PP	Viton elastomers, Carbon vs Silicon Carbide seal faces, 316 S.S. metal			
		John Crane	5620	parts and Hastelloy C springs			
Do	tridge uble sher	Flow- serve	ISC2PP	Viton elastomers, Silicon Carbide vs Silicon Carbide inboard seal faces,			
ı u	Silei	John Crane	5620	Carbon vs Silicon Carbide outboard seal faces, 316 S.S. metal parts and Hastelloy C springs			
		Flow- serve	ISC2BB	Viton elastomers, Carbon vs Silicon Carbide seal faces, 316 S.S. gland,			
Cart	tridae	John Crane	5625	sleeve & metal parts and Alloy 20 or Hastelloy C bellows			
Do	Cartridge Double Metal Flow- serve		ISC2BB	Viton elastomers, Silicon Carbide vs Silicon Carbide inboard seal faces,			
	lows	John Crane	5625	Carbon vs Silicon Carbide outboard seal faces, 316 S.S. metal parts and Alloy 20 or Hastelloy C bellows			
* Sta	* Standard seal on RL40167 and RL40257						

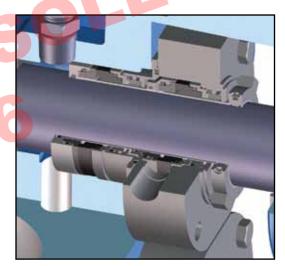
RL41507 (3" Shaft)

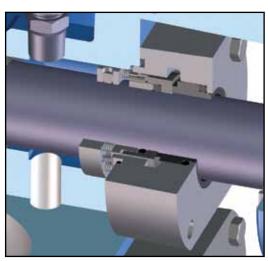

	Seal Style	Seal Vendor	Seal Type	Materials Of Construction				
	Cartridge Triple Lip Seal	** Fluid-tec	P/S-II	Viton elastomers, Gylon sealing elements, PTFE spacers, 316 S.S. metal parts				
		Flowserve	84					
		John Crane	5610	Viton elastomers, Carbon vs Silicon Carbide seal faces, 316				
		Chesterton	180	S.S. metal parts and Hastelloy				
	Cartridge	PPC Mech. Seals	P-3F	C springs				
	Single	Flowserve	85	\				
		John Crane	5610	Viton elastomers, Silicon Carbide vs Silicon Carbide seal				
		Chesterton	180	faces, 316 S.S. metal parts and				
		PPC Mech. Seals	P-3F	Hastelloy C springs				
	Cartridge Single Metal Bellows	John Crane	5615	Viton elastomers, Carbon vs Silicon Carbide seal faces, 316 S.S. metal parts and Alloy 20 or Hastelloy C bellows				
		Soliii Stanc	3013	Viton elastomers, Silicon Carbide vs Silicon Carbide seal faces, 316 S.S. metal parts and Alloy 20 or Hastelloy C bellows				
		John Crane	5620	Viton elastomers, Carbon vs Silicon Carbide seal faces, 316				
		Chesterton	280	S.S. metal parts and Hastelloy C springs				
	Cartridge Double	John Crane	5620	Viton elastomers, Silicon Carbide vs Silicon Carbide inboard seal faces, Carbon vs				
		Chesterton	280	Silicon Carbide outboard sea faces, 316 S.S. metal parts and Hastelloy C springs				
	Cartridge			Viton elastomers, Carbon vs Silicon Carbide seal faces, 316 S.S. gland, sleeve & metal parts and Alloy 20 or Hastelloy C bellows				
	Double Metal Bellows			Viton elastomers, Silicon Carbide vs Silicon Carbide inboard seal faces, Carbon vs Silicon Carbide outboard seal				
				faces, 316 S.S. metal parts and Alloy 20 or Hastelloy C bellows				

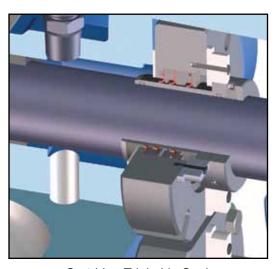
Section	270
Page	270.7
Issue	С


Shaft Sealing Options

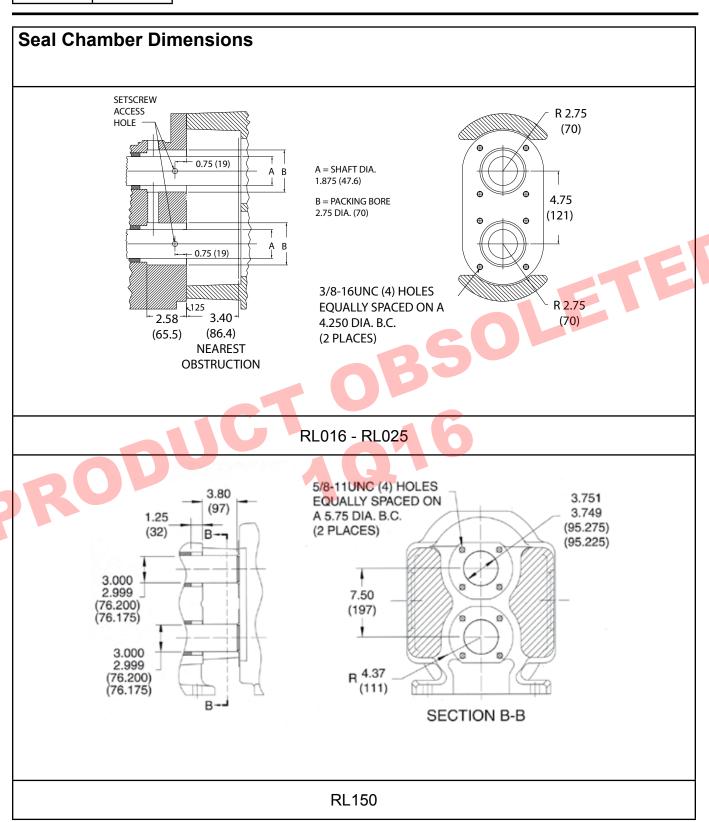
These drawings of the RL016 and RL025 stuffing box illustrate the various shaft sealing options on those sizes, which come standard with cartridge-style single mechanical seals. Packed glands and component mechanical seals are not available on the RL41507, which has cartridge triple lip seals standard. Actual seal construction varies by manufacturer.


The suckback tube provided vents the seal chamber to the inlet port. This keeps the chamber at the lowest system pressure to insure proper seal function. When reversing the rotation on the pump, the seal chamber will experience an increase in pressure, which may affect seal performance. Refer to seal manufacture's specifications or contact the factory for recommended pressure limits.


Cartridge Single Mechanical Seal


Packed Gland (limited to 200 psi/14 bar)

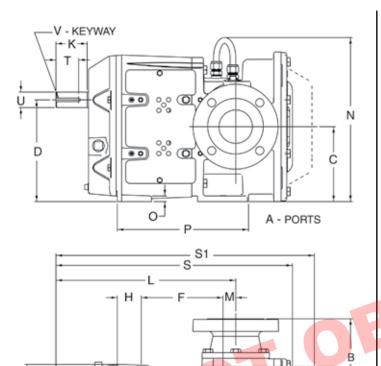
Cartridge Double Mechanical Seal



Component Single Mechanical Seal

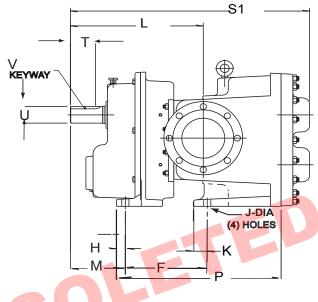
Cartridge Triple Lip Seal

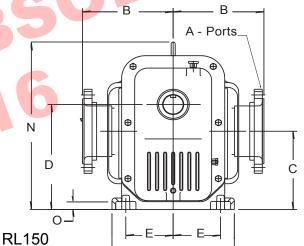
Section	270
Page	270.8
Issue	С



Section	270
Page	270.9
Issue	С

Dimensions


G


BOTTOM VIEW

J - DIA.

(4) HOLES

RL016 - RL02	25
--------------	----

G1

Size	Std	A①	B46	С	D	E	E1	F	G	G1	Н	J	K	L	М
RL016	in	3.00	8.00	6.63	9.00	3.34	3.00	7.22	3.96	3.74	2.11	0.56	2.75	15.86	1.12
KLUTO	mm	76	203	168	229	85	76	183	101	95	54	14	70	403	28
RL025	in	3.00	8.00	6.63	9.00	3.34	3.00	7.22	3.96	3.74	2.11	0.56	2.75	15.86	1.12
KLUZJ	mm	76	203	168	229	85	76	183	101	95	54	14	70	403	28
RL150	in	6	11.25	10.25	13.75	5.88	N/A	11.34	15.17	N/A	1.35	1	1.95	18.56	7.78
	mm	152	286	260	349	149	N/A	288	385	N/A	34	25	50	471	198

Size	Std	N	0	Р	S2	S13	Т	U	V
RL016	in	14.50	0.50	11.58	19.96	21.90	2.00	1.37	0.31
KLUIO	mm	368	13	294	507	556	51	35	8
RL025	in	14.50	0.50	11.58	20.86	22.80	2.00	1.37	0.31
KL025	mm	368	13	294	530	51	51	35	8
RL150	in	21.93	1.06	23.00	N/A	33.41	3.5	2.5	0.62
KL150	mm	557	27	584	N/A	849	89	63	15.88

NOTES

- ① Raised Face Flanges are standard on 016 and 025 Models. Lap Joint flanges are standard on 150 model. Ports are suitable for use with 150# and 300# ANSI stainless steel companion flanges or flanged fittings.
- ② Dimension for the standard pump (2-bushing).
- ③ Dimension for the high pressure pump (4-bushing).
- ④ All port options for 016 and 025 models will have the same port to port "B" dimension.
- (a) Optional 10" port on RL150 will have "B" dimension of 12.25 in (311.15 mm).

Section	270
Page	270.10
Issue	С

Performance Curve Notes

Printed performance curves are not available.

Performance curves can be electronically generated with the Viking Pump Selector Program. This program can be located on www.vikingpump.com for the general public.

For authorized distributors, this program can be found listed under the "Products" tab at www.idexconnect.com. Security passwords are required to access IDEXconnect.

INLET CONDITIONS

The performance curves show "Based on 10 In.-Hg.", or "Based on 0 In-Hg." which is the standard test condition. This is <u>not</u> the maximum suction capability of the pump.

NPSH (Net Positive Suction Head)

The NPSH_R (Net Positive Suction Head Required by the pump) is shown on each curve. NPSH_A (Net Positive Suction Head – Available in the system) must be greater than the NPSH_R. For a complete explanation of NPSH, see Application Data Sheet AD-19.

FOR RL41507 NPSH_R DATA CONSULT FACTORY

MECHANICAL EFFICIENCY:

The Mechanical Efficiency (expressed in percent) can be calculated using the following formula:

Mechanical Efficiency = (Differential Pressure, PSI) (Capacity, GPM) (100) (Horsepower, BHP) (1715)

METRIC CONVERSION: The following table has been compiled for conversion to metric values.

VACUU	M	PRE	SSURE	CAPACITY		
InHg	kPa*	PSI kPa*		GPM	M ³ /H	
(inches of mercury)	(Kilopascals)	(lb./in²)	(Kilopascals)	(US gal/minute)	(Cubic Meters / Hour)	
1	3.4	1	6.9	100	22.7	
5	17	25	172	200	45.4	
10	34	50	345	300	68.1	
15	51	100	690	400	90.8	
20	68	150	1034	500	113.5	
25	85	200	1379	600	136	
		250	1724	700	159	
		400	2758	800	181	

^{* 100} kPa = 1 bar